400-848-8001

军队文职数量关系答题技巧:工程问题之“交替合作”

2019-12-02 10:34:04
来源:红师教育
TAGS:

“工程问题”是研究在实际生产过程中,工程总量、工作效率、工作时间三者计算关系的题目,即W=P×T。也是军队文职考试题目中较为简单的一种题型。但随着考试难度的加大,比如部分事业单位、金融银行、国企等大型企业的招聘,也开始考一些之前并不常考的题目,比如“交替合作”。这类题目跟“多者合作”类似,但又有不同之处,就是多个效率不是同时进行,而是按照一定的工作顺序依次循环进行,那对于这样的题目如何掌握呢?今天,红师教育专家就结合具体的一些题目教授大家解题的思路和方法。

交替合作中可以分为两种情况,一种是出现的都是正效率,另一种是有正效率也有负效率。无论哪种情况,关键点都是找出最小的循环周期及一个循环周期的效率和。

一、只有正效率:循环顺序不同,最终时间不同。

循环周期数=工作总量/一个循环周期的效率和

例1:一项工程,甲单独做要20天完成,乙单独做要10天完成。如果甲先做1天,然后乙接着替甲做一天,再由甲接替乙做一天……两人如此工作。那么,完成这项工程共用多少天?

解析:设工作总量为20(20、10的最小公倍数),可知,甲、乙的效率分别为1、2。这里的循环周期为2天(甲、乙各1天),一个循环周期的效率和为3,20÷3=6……2,这里的6即为6个循环周期,对应12天,剩余的2个的工作量,甲、乙各做1个工作量,甲做1个工作量对应1天,乙做一个工作量对应0.5天。所以,共需12+1+0.5=13.5天。

变形:一项工程,甲单独做要20天完成,乙单独做要10天完成。如果乙先做1天,然后甲接着替乙做一天,再由乙接替甲做一天……两人如此交替工作。那么,完成这项工程共用多少天?

解析:设工作总量为20(20、10的最小公倍数),可知,乙、甲的效率分别为2、1。这里的循环周期为2天(乙、甲各1天),一个循环周期的效率和为3,20÷3=6……2,这里的6即为6个循环周期,对应12天,剩余的2个的工作量,乙做1天刚好完成。所以,共需12+1=13天。

二、有正效率也有负效率,青蛙跳井问题。

例2:现有一口高20米的井,有一只青蛙坐落于井底,青蛙每次跳的高度为5米,由于井壁比较光滑,青蛙每跳5米下滑2米,请问:这只青蛙几次能跳出此井?

解析:青蛙每跳5米下滑2米,相当于青蛙一次只能跳3米,5次后离井口还有5米,此时,再跳一次就直接跳出去了,所以,总共跳了6次。

以上就是红师教育有关工程问题的答题建议,相信同学们已经发现了,这类题型还是比较简单的,同时也能保证不错的正确率。红师教育也提醒大家在备考学习中要加强技巧的练习,为好成绩打下坚实基础。

责任编辑:郑智杰

查看全部

热门资讯

推荐资讯